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Abstract

A numerical model based on the cellular automaton technique has been developed to simulate
the formation and evolution of metal foam produced from metal powder mixed with a
blowing agent. The model incorporates the influence of surface tension, gas atmosphere, gas
pressure and viscosity. It is able to reproduce qualitatively the pore structure found in
experiments. The model has been used successfully to demonstrate the effect of important
process features such as foaming velocity, mould confinement, hydrogen loss and gas
pressure.

1 Introduction

The cell structure of metal foams produced from metal powder mixed with a foaming agent is
strongly dependent on the foaming conditions. The investigation of the formation and
evolution of the cellular structure is important since it determines the properties, especially
the mechanical properties, of the metal foam. The present understanding of the influence and
the mutual interaction of foaming time, temperature, atmospheric pressure, gravitational
force, viscosity of the melt, surface tension etc. is rather poor and mainly grounded on
empirical knowledge. The elucidation and quantitative description of the physical
mechanisms controlling the formation of metal foams is essential for designing foaming
technologies and alloys.
During each phase of formation - bubble nucleation, growth, coarsening and coalescence - the
metal foam is a non-equilibrium system due to the interfacial energy of the gas-liquid
interface. That is, the cellular structure is intrinsically unstable and always evolving towards
patterns with less surface area unless other factors such as boundary pinning or short-range
repulsive forces intervene. The basic mechanism to reduce the interfacial area is the
elimination of entire cells, i.e. the foam coarsens. Considerable theoretical work has been
carried out on the description of the evolution of dry foams [1] [2]. These models investigate
the temporal evolution of an already existing cellular structure. They are not able to describe
the expansion of the foam starting from the nucleation of bubbles. For this reason, the
influence ofprocessing parameters on the resulting cellular structures can not be inferred from
these models. In the present paper a modified Cellular Automaton (CA) model is suggested
that is able to model the complete foam formation and evolution process with aluminium and
TiH2 as the matrix and the foaming agent, respectively.

2 Physical Model

It is assumed in our model that nuclei for bubbles are already present at the beginning in form
of micro cracks and small pores. Additionally, bubbles can develop due to nucleation within
the liquid metal. Nucleation within the liquid metal requires bubble hydrogen pressures in the
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range of 10-100 bar for aluminium Critical hydrogen concentration
corresponding to critical hydrogen c(x, t) for nucleation within the liquid metal
concentrations ranging from Ccrit = .. : "'_ ~ ':.. .. ..

6.10-6 to 2.10-5 mol/cm3 [3]. We __ ... .: .. .::~ :.: _ _~.-._:. :. _
Ccrit ..... '. "assume that the decomposition of

the TiH2-particles can be treated as
a homogenous volume source Q of
hydrogen in the liquid metal. This Cb

is reasonable since the mean
'"distance of two TiH2-particles is Liquid metaf'+ TiHzparticles

only about 30 - 40 ~m. Due to the .. ..
high diffusion velocity of hydrogen Fig. I: Schematic representation of the hydrogen
in molten aluminium [4] concentration c(,!, t) as a function of the distance to a
concentration gradients on this bubble.
length scale are completely
equalised within 10-3 s. This is short compared to the decomposition time of the TiH2. The
s.ituation is illustrated in Fig. 1 where c(:!. t) is the hydrogen concentration throughout the melt
resulting from the decomposition of the TiH2 and diffusion of hydrogen to the gas bubbles.
The hydrogen concentration adjacent to a gas bubble according to Sieverts' law [3] is denoted
by Cb. As long as c(:!. t) is smaller than Cerit nucleation within the liquid metal does not occur.
If the local hydrogen concentration exceeds Cerit a new bubble nucleus is formed.
Let us now consider foam formation in a two-dimensional spatial region n. Zones within n
where there is metal are denoted by m. Gas is found in the region n \ m. The metal-gas
interface is denoted by r(t). r(t) consists of the surface of the individual bubbles and that of
co. During heating the foaming agent decomposes and the released hydrogen diffuses to the
bubble nuclei. The rising bubble pressure PH

2
forces the bubble to expand. The gas flux from

the metal into the bubbles is governed by the following equations:
i) gas diffusion equation

8c(x,t)-a;- +~.Vc(!,t) - V(DVc(!,t» = QC~,t) for ! Em \r(t)

(c: hydrogen concentration, D: diffusion coefficient, Q: hydrogen source, 1:: diplacement velocity, T: absolute
temperature)
ii) Sieverts' law (for hydrogen dissolved in liquid aluminium [3J)

2760
3 --- ~ mol

cb(!,t)=1.4·1Q- ·10 T 'V PH2 3.Jj;;; for !Er(t)
cm bar

Movement ofthe interface r(t)
In our model the displacement of r(t) results on the one hand from the expansion of the whole
system and on the other hand from the local growth of the individual bubbles. The global
expansion is described as follows. The movement of r(t) changes the bubble area, i.e. bubbles
grow or shrink. In order to fulfil global mass conservation the displacement field yf:!.t)
defined on co has to be divergence free, i.e. 'Vu(:!,t) = O. We describe the material flow due to

bubble expansion with the help of fundamental solutions of the last equation. Within this
framework growing and shrinking bubbles are modelled by point sources and sinks located at
the centre of mass of the bubbles, respectively. The displacement increment dY:. for bubble j is
given by

d - 1 "S ! j - !i (Si: source amplitude of bubble number i)
?!.-2L..J i 2

7r i* j I! j -!i I
for an infinite spatial region n. With additional mirror sources other boundary conditions can
be realised.
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For the local contribution to dy we assume equilibrium of the local acting forces on F(t). If
the distance to other bubbles is large bubble growth is that of an isolated bubble in a liquid.
The gas-liquid interface F(t) of a bubble is given by:

on r(t) with p = (j =(j'K
a R

dR
P. =Q'17'-

1] dt

(Po: atmospheric pressure, PHz : bubble pressure, a: surface tension, 1]: viscosity, R: curvature radius,

Ko curvature , ~: constant)

The situation changes if the bubble density is so high that the bubbles are no more able to
assume their energetically favourable round shape without deforming other bubbles. Due to
the increase of total surface area mutually repulsive forces proportional to the surface tension
develop. In this case Po in the upper equation is replaced by PH - Pa where PH is the bubble

2 2

pressure of the neighbouring bubble and Pa is the Laplace pressure at the surface of the
neighbouring bubble nearest to the point of interest.

3 Cellular Automaton Model

Fig. 2:
36-neighbour
surrounding of a

HH.f:f:r77F"-+--l cell at the gas-
~~~H liquid boundary.

gas

Cellular automata (CA) are mathematical models designed to describe a complex interaction
ofa large number of subsystems called cells. These cells all follow the same rules and interact
only in the local neighbourhood with other cells. Due to the fact that our model for bubble
formation and evolution separates the local growth of the bubbles from the global expansion
of the whole system a CA model can be used. Our approach is very similar to the well known
activator-inhibitor models [5] with the bubble pressure as activator and the presence of other
bubbles in the neighbourhood as inhibitor.
The growth process is realised in our CA model as follows. The spatial region n is
represented by an array of regularly arranged rectangular cells. Each cell is characterised by
three variables: the volume fraction of fluid E, the concentration of the dissolved hydrogen e,
the number of the bubble the cell belongs to and a state - boundary and non-boundary 
containing information whether the cell is considered to change the value of liquid fraction
during the next simulation step.
The calculation of the curvature K and the
interface normal vector !l is crucial and must
be carried out carefully in order to eliminate
the artificial anisotropy caused by the
rectangular cells. We regard a 36-neighbour
surrounding of a cell whose state variable
indicates that it can change their· liquid
fraction during the next simulation step (see
Figure 2). The curvature K of an interface
cell with the solid fraction E is calculated
from the following expression:

K=18.5-3.5.C+7.(1-E).C-G with c=jSina for a<::
18.5·a /.

cosa a <-
4

(G: total gas fraction within the 36-surrounding, a: cell size, a: angle between normal vector and horizontal
lattice axis)
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This fonnula is a modification of the method proposed by Dithey et al. [6] where C =1.
Without the correction factor C bubble shape is not round in equilibrium. An explicit finite
difference scheme was used to solve the gas diffusion equation with the middle points of the
cells as finite difference mesh. The modification of the liquid fraction increment during a
simulation step is described in the following way:

(

(!i- . d l.:!:J . cos a

!le =

(!1. . d l.:!:J . sin a

for

O~a<!:...
- 4

Jr Jr
-<a <-
4 - 2

Again it is essential to take the orientation of the CA lattice explicitly into account in order to
eliminate the anisotropy induced by the quadratic lattice.

4 Results and Discussion

As long as nothing else is indicated the following material parameters were used below:
a = 50 j.lm, T = 700 Qc, D = 4.10-3 cm2/s, a = 2.10-5 J/cm2

, {17 = 100 g/cm s, Po = 1 bar.

Effect ofConfinement
Our analytical method to calculate the displacement field !! allows to investigate two
situations: a) confined expansion with rectangular boundaries and b) free expansion in a semi
infinite spatial region. The resulting cell structures are depicted in Fig. 3.

a) confined expansion

Os 7s 19 s 32 s

b) free expansion
1 s

• ••• ••••••••••••. ..• .. ..-.......:.....
1.5 cm

20 s 40 s 60 s

Fig. 3: Temporal evolution of cell morphology for a) confined (300 x 300 CA cells) and
b) free expansion (800 x 600 CA cells). Material parameters: Q=l.3 .10-6 mol/cm3s, Po =

1 bar (hydrogen atmosphere)
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If the expansion is free the bubbles are statistically orientated. The temporal evolution shows
that there are only few topological rearrangements. In contrast, the confined expansion leads
to elongated bubbles in the foaming direction. In order to keep the surface energy low many
topological rearrangements take place. The different bubble size results from the statistically
distributed bubble nuclei. The bubbles are large in the end if the initial nuclei density was low
and vice versa. Coarsening due to the pressure difference between bubbles of different size is
very slow and has no significant influence within the time frame investigated.

Foaming Velocity
Since our model at the moment does not allow to vary the temperature we modelled the
influence of the heating velocity by altering the hydrogen source Q. If Q is small the released
hydrogen has enough time to diffuse to the preexistent bubble nuclei thus keeping c < CcrU. In
this case bubble nucleation from the liquid metal is suppressed. For higher heating velocities
it happens that the local hydrogen concentration exceeds CcrU and new bubble nuclei evolve
(FigA).

0.1 s

... .... . .... ... . ..
• •• • ••

0.25 s 0.5 s

:....•.... ..~•••••••
\~.•.•..
• ••••••. .-.••••••••

2.5 s

Fig. 4: Influence of the foaming velocity on the
resulting cell structure (450 x 280 CA cells, CCl'U=

10-5 mol/cm3
, 28 statistically distributed initial

nuclei, Po = 1 bar, hydrogen partial pressure = 0
bar) :
above: Q=1.3·10-5 mol/cm3s, number of bubbles
has doubled
right: same initial state but Q=3.9·10-6 mol/cm3s,
number of bubbles is equal to the number of
initial nuclei, bubbles at the surface shrink due to
loss ofhydrogen to the surroundings.

10 s

•••••.- .-••••••••••••_'la_.r.
In regions where the bubble density is low c increases until Ccrit is reached and a new bubble
nucleus is borne. In this way nucleation from the liquid metal equalises large bubble density
differences. Consequently, the bubble size and its variation decreases with increasing foaming
velocity.

Hydrogen loss at the surface
How much hydrogen is lost during foaming depends on the hydrogen partial pressure in the
atmosphere and the ratio of surface area to volume. It is also a function of the foaming
velocity. If the decomposition of the TiH2 is very slow there is much time for the dissolved
hydrogen to diffuse to the surface and to be unavailable for foaming. For high decomposition
rates and nucleation from the liquid, the local hydrogen gradient always points to the next
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bubble. Hydrogen diffuses first to the growing bubbles rather than to the surface.
Nevertheless, the hydrogen loss per time interval in absolute terms is higher than for slow
foaming conditions. Fig. 5 shows the temporal evolution of the cell structure if we assume PH2

= 0 at the surface.

1 s 10 s 20 s 30 s

Fig. 5: Effect of hydrogen loss on the cell structure (300 x 150 CA cells, Q = 2.6·]0-6

mol/cm3s). 22 statistically distributed bubble nuclei. PH2 = 0 bar at the surface.

Bubbles near to the surface eventually shrink and vanish due to the high hydrogen loss to the
surroundings. Consequently, the cell structure coarsens. Another effect is that the growing
velocity of the foam approaches approximately zero 40 s after the beginning of foaming.

Atmospheric Pressure
The bubble pressure is only slightly higher than Po. Consequently, if we increase Po without
altering other parameters, the residual bubble volume decreases and vice versa.
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